Points

Attenzione! Se leggi questo messaggio significa cha hai disabilitato JavaScript

In tal caso le funzionalità del sito non sono disponibili.

 
Math
● Le espressioni si possono inserire solamente tramite la tastiera dell'app
● Il campo nel quale sarà inserita l'espressione è quello evidenziato in giallo
● Il campo in cui inserire l'espressione si seleziona semplicemente facendo click su di esso. Il campo diventerà così evidenziato in giallo
● Non è possibile comporre parole arbitrarie in quanto inserendo le lettere dell'alfabeto verrà inserito uno spazio dopo di essa per cui ogni lettera sarà riconosciuta come una variabile a se
● Inserendo le varie funzioni predefinite verrà inserito il suo nome e quando si cancella questo elemento verrà cancellato l'intero nome
key C
Cancella l'intera espressione
key CE
Cancella l'ultima espressione inserita
key left arrow
Sposta il cursosre di un'espressione a sinistra
key right arrow
Sposta il cursosre di un'espressione a destra

Using the following buttons you can perform operations related to points in the cartesian plane






Input of the expressions

    • The coordinates of the points are inserted as in the following example by separating the coordinates with the comma.
example of entering the coordinates of a point

sqrt(3),a

  • There is no need to type in the round brackets to enclose the coordinates
  • The coordinates of the points can contain letters because the literal calculation is also performed
  • Equations (straight lines and conics) can be inserted either explicitly or implicitly
  • In the equations you can not enter parameters so only the letters x and y must appear
  • The product between two letters can be indicated with an asterisk symbol (*) or by leaving a space between the letters. If you write two or more letters consecutively, it is not interpreted as a product but as a “single variable (x * y = product between x and y, x y = product between x and y; xy = single variable called xy)

Examples of calculation processes performed by the software (click on the image to see the related development):

You can test different input shapes by copying the text in red in the image captions and pasting it into the data entry window that appears by clicking any of the buttons at the top of the page to perform an operation (Distance between two points, Midpoint of a segment, etc …).

Examples of Inputs

Points coordinates

Points coordinates sqrt(3),1 2sqrt(3),-1/4

Example of entering the equation of a straight line in explicit form

equation of a straight line in explicit form y=1/4x-1

Example of data entry: equation of the straight line in an implicit form

Equation of the straight line in an implicit form
2x+sqrt(3)y-1=0

Complete second degree equation in x y (conical)

Equation of a conic (complete with second degree in x y)
x^2+x y-y^2-x=0

Example of entering the equation of a parabola with axis parallel to the x axis

Equation of a parabola with axis parallel to the x axis
x=y^2-1

Examples of development carried out by the system (click on the image to see the related course):

Piano Cartesiano: Distanza tra due punti

DISTANCE BETWEEN TWO POINTS: The system uses the appropriate formula by checking whether the two points have common coordinates or not.

Medium Point: the system recognizes if the points have some co-ordination in common and in case adapts the application of the formulas to the data provided

Medium Point: the system recognizes if the points have some co-ordination in common and in case adapts the application of the formulas to the data provided

cartesian plane: Intersection between two curves

INTERSECTION BETWEEN TWO CURVES: The system constructs and solves the system formed by the equations of the two curves

Cartesian Plan: Baricenter of a Triangle

BARICENTER OF A TRIANGLE: The system directly applies the formula to determine the center of gravity

cartesian plane: Circumference of a Triangle

CIRCOCENT OF A TRIANGLE: The system calculates two axes of the triangle and intersects them to find the circumcentre

Cartesian Plan: Orthocenter of a Triangle

ORTOCENTRO OF A TRIANGLE: The system calculates two heights of the triangle and intersects them to find the orthocenter

Points ultima modifica: 2018-08-04T05:13:36+00:00 da roberto